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PROBLEMS IN STABILITY ANALYSIS OF FINITE DIFFERENCE

SCHEMES FOR HYPERBOLIC SYSTEMS AND RELATED TOPICS

by

Moshe Goldberg

ABSTRACT

Research completed under Grant AFOSR-79-0127 consists

mainly of the following topics: (1) Convenient stability

criteria for finite difference approximations to hyperbolic

initial-boundary value problems: theory and applications.

(2) Operator norms, matrix norms, and multiplicativity.

(3) Generalizations of the Perron-Frobenius Theorem and

localization of eigenvalues with maximal absolute value.
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PROBLEMS IN STABILITY ANALYSIS OF FINITE DIFFERENCE

SCHEMES FOR HYPERBOLIC SYSTEMS AND RELATED TOPICS

by

'1nshe Goldberg

The purpose of this final scientific report is to summarize my Air

Force sponsored research in stability analysis of finite difference

approximations of hyperbolic partial differential systems and related

topics, during the period October 1979 - April 1983.

1. Convenient Stability Criteria for Difference Schemes of Hyperbolic

Initial-Boundary Value Problems.

Consider the first order system of hyperbolic partial differential

equations

au(x,t)/at Aau(x,t)/3x + Bu(x,t) + f(x,t), x 0 0, t 0,

where u(x,t) is the unknown vector; A a Hermitian matrix of the form

AI(D A I , A <0,AI> 0; and f(x,t) is a given vector. The problem is

well posed in L2 (0,0) if initial values

u(x,t) = g(x), x k 0,

and boundary conditions

u I(0,t) = Su I(0,t) + h(t), t k 0,

are prescribed. Here uI and u are the inflow and outflow unknowns

corresponding to the partition of A, and S is a coupling matrix.
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In the past years, E. Tadmor and I 112, 13] have succeeded in obtaining

easily checkable stability criteria for the above initial-boundary value

problem, where the difference approximation consists of an arbitrary basic

scheme - explicit or implicit, dissipative or unitary, two-level or multi-

level - and boundary conditions of a rather general type.

The first step in our stability analysis was to prove that the

approximation is stable if and only if the scalar outflow components of

its principal part are stable. This reduced the global stability question

to that of a scalar, homogeneous outflow problem of the form

au(x,t)/at = aau(x,t)/ax, a > 0, x 0, t 1 0,

u(x,O) = g(x), x 1 0; u(Ot) 0, t 0.

Investigating the stability of the reduced problem, our main results

were restricted to the case where the boundary conditions are translatory,

i.e., determined at all boundary points by the same coefficients. This,

however, is not much of a limitation since such boundary conditions are

commonly used in practice; and in particular, when the numerical boundary

consists of a single point, the boundary conditions are translatory by

definition.

Our main stability criteria for the translatory case were given

essentially in terms of the boundary conditions. Such scheme-independent

criteria eliminate the need to analyze the intricate and often complicated

interaction between the basic scheme and the boundary conditions; hence

providing convenient alternatives to the well known stability criteria of

Kreiss [20] and of Gustafsson, Kreiss and Sundstrim 1171.

In our analysis we assumed that the basic scheme is stable for the

pure Cauchy problem and that the approximation is solvable. Under these
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basic assumptions - which are obviously necessary for stability - we

found that if the basic scheme is dissipative, then the reduced problem

is stable if the boundary conditions are solvable and satisfy the von

Neumann condition as well as an additional simple inequality. If the

basic scheme is unitary, then instead of satisfying the von Neumann

condition, we required that the boundary conditions be dissipative.

Having the new stability criteria, we studied several examples.

First, we reestablished the known fact that if the basic scheme is two-level

and dissipative, then outflow boundary conditions generated by horizontal

extrapolation always maintain stability. Surprisingly, we showed that this

result is false if the basic scheme is of more than two levels. Next, for

arbitrary dissipative basic schemes we found that if the outflow boundary

conditions are generated, for example, by oblique extrapolation, by the

Box-scheme, or by the right-sided Euler scheme, then overall stability is

assured. Finally, for general basic schemes (dissipative or unitary) we

showed that overall stability holds if the outflow boundary conditions

are determined by the right-sided explicit or implicit Euler schemes.

These examples incorporate and generalize many special cases discussed

in recent literature such as [2, 3, 12, 16, 17, 19, 21, 27, 28, 301 and

others.

In the past two summers, Tadmor and I [15) were working in order to

extend our stability criteria to include a wider range of examples. The

proposed new criteria will depend on both the basic scheme and the boundary

conditions, but not on the interaction between the two; hence we expect

the new results to be as convenient as our scheme-independent criteria in

Ilk, 131. A firsit 41rati of this work is anticipated in the summer of 1983.



Such contributions should be helpful to engineers and applied

mathematicians in better understanding and exploiting old and new finite

difference approximations to hyperbolic systems.

2. Operator Norms, Matrix Norms, and Multiplicativity.

In the past three years, E.G. Straus and I [7, 81 have continued our

study of sub-multiplicative norms and seminorms on operator algebras - an

important subject in almost every field of numerical analysis and other

areas of applied mathematics. In our work we studied an arbitrary normed

vector space V over the complex field C, with an algebra B(V) of linear

operators on V, and a seminorm N on B(Y). If N is positive definite,

i.e., N(A) > 0 for all A # 0, then we call N a generalized operator

norm. If in addition, N is (sub-) multiplicative, namely N(AB) S N(A)N(B)

for all A,B E B(V), then N is called an operator norm on B(V).

Given a seminorm N on B(V) and a fixed constant p > 0, then

obviously N. = pN is a seminorm too. Similarly, N is a generalized

PP~operator norm if and only if N is. In both cases, Np may or may not

be multiplicative. If it is, we say that p is a multiplicativity factor

for N.

Having these definitions we proved in 171 the following:

(i) If N is a nontrivial seminorm or a generalized operator norm on

B(V), then N has multiplicativity factors if and only if

N sup{N(AB) : A,B E B); N(A) = N(B) = 1) <

(ii) If PN < -, then p is a multiplicativity factor for N if and

only if p p N"
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Special attention was given by us to the finite dimensional case where

it suffices, of course, to consider C nXn , the algebra of n x n complex

matrices. Following Ostrowski [251, we adopt in this case the terms

generalized matrix norm and matrix norm instead of generalized operator

norm and operator norm, respectively. We proved in this case that while

nontrivial, indefinite seminorms on C nxn never have multiplicativity

factors, generalized matrix norms always have such factors. In the

infinite dimensional case, however, the situation was less decisive, i.e.,

there exist nontrivial indefinite seminorms and generalized operators on

B(V) which may and may not have multiplicativity factors.

In both the finite and infinite-dimensional cases we proved that if

M and N are seminorms on B(V) such that M is multiplicative, and

if q > 0 are constants satisfying

CM(A) 5 N(A) 5- qM(A) * A E B(V)

then any p with p > n/C
2 is a multiplicativity factor for N.

Using this practical result we showed, for example, that if V is

an arbitrary Hilbert space and

r(A) sup{I(Ax,x)l : xE V, IxA = 1}, A E

is the classical numerical radius, then pr is an operator norm if and

only if p 4. This assertion is of interest since the numerical radius

r is perhaps the best known nonmultiplicative generalized operator norm

1, 4, 18], and it plays an important role in stability analysis of finite

difference schemes for multi-space-dimensional hyperbolic initial-value

problems 114, 22, 23, 291.
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Our next step was to investigate C-numerical radii which constitute

a generalization of the classical radius r, defined by us in (5] as

follows: For given matrices A,C E C nxn, the C-numerical radius of A

is

rc(A) = max{[tr(CU*AU)l : U nxn unitary).

We have shown [51 (compare [241) that rC is a norm on C nxn -- and so has

multiplicativity factors -- if and only if C is not a scalar matrix and

tr C # 0. Such multiplicativity factors for the above rC were found in

[5-9].

Our most recent effort in this area was to obtain multiplicativity

factors for the well known k -norms (I 5 p 5 c):
P

1A1p = {ij la ii jp}/P, A = (a. E Cnx n

It was shown by Ostrowski [251 that these norms are multiplicative if and

only if I S p 5 2. For p 2 2 we have shown [101 that p is a

multiplicativity factor for 1A1 if and only if p > n thus, inP

particular, obtaining the useful result that n 1A1 is a multiplicative

norm on C nxn

3. Generalizations of the Perron-Frobenius Theorem and Localization of

Eigenvalues with Maximal Absolute Value.

In many instances one is interested in localizing an eigenvalue of

maximal absolute value for a given matrix. The most famous result in this

vein is the Perron-Frobenius Theorem which states that a matrix with non-

negative elements has at least one nonnegative eigenvalue of maximal

absolute value.

9
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Last summer, E.G. Straus and I were looking for generalizations of

this celebrated theorem that locate an eigenvalue of maximal absolute

value within a certain angle of the complex plane depending on the angle

which contains the elements of the matrix. More precisely, let A n(a)

denote the family of all n x n complex matrices whose entries are

contained in a sector

S(a) = {z : jarg zi 5 a; 0 5 a 5 n fixedl.

For each A E A n(a) let P(A) denote the minimal (nonnegative) angle

for which the sector S(P) contains an eigenvalue of A with maximal

absolute value. Thus, defining

On(a) = sup{i(A) A E An(a))

we posed the problem of finding 0 (a) as a function of a and n.

n

Since the Perron-Frobenius Theorem states that n (0) = 0, a wishful

generalization would read 0n(a) = a. This unfortunately is not so, as

shown by us in (111 where we give a complete description of the 2 x 2

case as vell as partial results for n 3.

For n = 2, for example, we have

a for a S n/4

(a) a + n/2 for n/4 < orSn/2

7r for a > n/2,

where the discontinuity in p2 (a) is typical for all n. More expected

properties of 0 (a) are:

(i) n(a) Z a for al a an# .

(ii) n (a) is a nondecreosing function of a and n.

l0



REFERENCES

1. C.A. Berger, On the numerical range of powers of an operator, Not.
Amer. Math. Soc. 12 (1965), Abstract No. 625-152.

2. C. Goldberg, On a boundary extrapolation theorem by Kreiss, Math.
Comp. 31 (1977), 469-477.

3. , On boundary extrapolation and dissipative schemes for
hyperbolic problems, Proceedings of the 1977 Army Numerical Analysis
and Computer Conference, ARO Report 77-3, 157-164.

4. , On certain finite dimensional numerical ranges and

numerical radii, Linear and Multilinear Algebra 7 (1979), 329-342.

5. M. Goldberg and E.G. Straus, Norm properties of C-numerical radii,
Linear and Multilinear Algebra Appl. 24 (1979), 113-131.

6. ,Combinatorial inequalities, matrix norms, and

generalized numerical radii, in "General Inequalities 2", edited by
E.F. Beckenbach (Proceedings of the Second International Conference
on General Inequalities, Oberwolfach, 1978), Birkhauser Verlag,
Basel, 1980, 37-46.

7. _ , Operator norms, multiplicativity factors, and C-numerical
radii, Linear Algebra Appi. 43 (1982), 137-159.

8. , Combinatorial inequalities, matrix norms, and generalized
numerical radii, in "Generalized Inequalities 3", edited by
E.F. Beckenbach (Proceedings of the Third International Conference
on General Inequalities, Oberwolfach, 1981), Birkhauser Verlag,
Besel, 1982, in print.

9. , Multiplicativity factors for C-numerical radii, Linear
Algebra Appl. 54 (1983).

10. , Multiplicativity of £ norms foC matrices, Linear
Algebra Appl. 52-53 (1983), 351-360.P

11. , On generalizations of the Perron-Frobenius Theorem,
Linear and Multilinear Algebra 14 (1983), 253-266.

12. M. Goldberg and E. Tadmor, Scheme-independent stability criteria
for difference approximations of hyperbolic initial-boundary value
problems. I, Math. Comp. 32 (1978), 1097-1107.

13. , Scheme-independent stability criteria for difference
approximations of hyperbolic initial-boundary value problems. 11,
Math. Comp. 36 (1981), 605-626.

14. , On the numerical radius and its applications, Linear
Algebra Appl. 42 (1982), 263-284.

15. , Convenient stability criteria for difference approximations
of hyperbolic initial-boundary value problems, in preparation.

11



16. B. Gustafsson and J. Oliger, Stable boundary approximations for a

class of time discretizations of ut = AD0u, Report No. 87, 1980,

Dept. of Computer Science, Uppsala Univ. Uppsala, Sweden.

17. B. Gustafsson, H.-O. Kreiss and A. Sundstrdm, Stability theory of
difference approximations for mixed initial boundary value problems.
II, Math. Comp. 26 (1972), 649-686.

18. P.R. Halmos, "A Hilbert Space Problem Book", Van Nostrand, New York,
1967.

19. H.-O. Kreiss, Difference approximations for hyperbolic differential
equations, in "Numerical Solution of Partial Differential Equations",
edited by J.H. Bramble (Proc. of Symposium on Numerical Solution of
Partial Differential Equations, Univ. of Maryland, 1965), Academic
Press, New York, 1966, 51-58.

20. , Stability theory for difference approximations of
mixed initial-boundary value problems. I, Math. Comp. 22 (1968),
703-714.

21. H. -0. Kreiss and J. Oliger, "Methods for the Approximate Solution
of Time Dependent Problems", GARP Publication Series No. 10, 1973.

22. P.D. Lax and B. Wendroff, Difference schemes for hyperbolic equations
with high order of accuracy, Comm. Pure Appl. Math. 17 (1964), 381-391.

23. A. Livne, Seven point difference schemes for hyperbolic equations, Math.
Comp. 29 (1975), 425-433.

24. M. Marcus and M. Sandy, Three elementary proofs of the Goldberg-Straus
theory on numerical radii, Linear and Multilinear Algebra 11 (1982),
243-252.

25. A.M. Ostrowski, Uber Normen von Matrizen, Math. Z. 63 (1955), 2-18.

26. C. Pearcy, An elementary proof of the power inequality for the
numerical radius, Mich. Math. J. 13 (1966), 289-291.

27. G. Skolermo, How the boundary conditions affect the stability and
accuracy of some implicit methods for hyperbolic equations, Report
No. 62., 1975, Dept. of Computer Science, Uppsala University,
Uppsala, Sweden.

28. , Error analysis for the mixed initial boundary value
problem for hyperbolic equations, Report No. 63, 1975, Dept. of
Computer Science, Uppsala University, Uppsala, Sweden.

29. E. Turkel, Symmetric hyperbolic difference schemes and matrix problems,

Linear Algebra Appl. 16 (1977), 109-129.

30. H.C. Yee, Numerical approximation of boundary conditions with
applications to inviscid equations of gas dynamic, NASA Technical
Memorandum 81265, 1981, NASA Ames Research Center, Moffett Field,
California.

12



PUBLICATIONS

Moshe Goldberg
October 1979 - April 1983.

1. Norm properties of C-numerical radii (with E.G. Straus), Linear
Algebra and Its Appliations 24 (1979), 113-132.

2. On certain finite dimensional numerical ranges and numerical radii,
Linear and Multilinear Algebra 7 (1979), 329-342.

3. Combinatorial inequalities, matrix norms, and generalized numerical
radii (with E.G. Straus), in "General Inequalities 2", edited by
E.F. Beckenbach (Proceedings of the Second International Conference
on General Inequalities, Mathematical Research Institute, Oberwolfach,
1978), Birkhauser-Verlag, Basel, 1980, 37-46.

4. Scheme-independent stability criteria for difference approximations of
hyperbolic initial-boundary value problems. II, (with E. Tadmor), Math.
Comp. 36 (1981), 633-626.

5. On the numerical radius and its applications (with E. Tadmor), Linear
Algebra and Its Applications 42 (1982), 263-284.

6. Operator norms, multiplicativity factors, and C-numerical radii
(with E.G. Straus), Linear Algebra and Its Applications 43 (1982),
137-159.

7. On the mapping A 4 A+, Linear and Multilinear Algebra 12 (1983),
285-289.

8. Multiplicativity of £ norms for matrices (with E.G. Straus),
p

Linear Algebra and Its Applications 52-53 (1983), 351-360.

9. Combinatorial inequalities, matrix norms, and generalized numerical
radii. II (with E.G. Straus), in "General Inequalities 3", edited
by E.F. Beckenbach (Proceedings of the Third International Conference
on General Inequalities, Mathematical Research Institute. Oberwolfach,
14IQ$. Firkhauser-Verlag. F.isel. 1983.

I, Mill t il,'icat ivity factors for L-numerical radix -ith E.G. Straus.

II. On generalizations of the Perron-Frobenius Theorem (with E.G. Straus),
Linear and Multilinear Algebra 14 (1983), 253-266.

12. Convenient stability criteria for difference approximations of
hyperbolic initial-boundary value problems (with E. Tadmor), in
preparation.

13



NUMERICAL RANGES, EIGENVALUES, MATRIX INEQUALITIES, AND TENSORS

by

-Marvin Marcus

ABSTRACT

The results obtained fal. into three separate but

related areas: (1) Structure of the numerical range and

the localization of eigenvalues. (2) Classical matrix

inequalities. (3) Tensors and multilinear algebra.
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NUMERICAL RANGES, EIGENVALUES, MATRIX INEQUALITIES, AND TENSORS

by

Marvin Marcus

The results obtained fall into three separate but related areas:

(I) Structure of the numerical range and the localization of eigenvalues.

(2) Classical matrix inequalities.

(3) Tensors and multilinear algebra.

The work on the numerical range and eigenvalue localization theory

appears in [1, 2, 3, 6, 7, 8, 11, 12]. The numerical range of a linear

operator A is the image of the unit sphere under the mapping

x - (Ax,x)

It is a classical result of Hausdorff and Toeplitz that the numerical

range is a convex region in the plane which contains all the eigenvalues

of A. As such, it is of fundan- tal importance in investigations of

stability of difference schemes for partial differential equations. This

has been pointed out and developed by a number of authors, including

M. Goldberg, one of the investigators on this grant.

In II], a characterization of unitary operators in terms of a

generalized numerical range is obtained. This is then used to analyze the

structure of linear operators on spaces of matrices which preserve the

numerical range. This work extended earlier results of V.J. Pellegrini

[Studia Math. 54 (1975), 143-147).
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Items [2] and 131 discuss the structure of the numerical range of

a class of sparse 0,1 matrices. Numerical experiments describing the

structure of higher numerical ranges are included.

In [61, it is shown that the nonprincipal subdeterminants of a

normal matrix satisfy certain quadratic identities. These identities

are used to obtain upper bounds on such subdeterminants in terms of

elementary symmetric functions of the moduli of the eigenvalues. The

same analysis yields lower bounds on the spread of a normal matrix and

on the Hilbert norm of an arbitrary matrix. The results in [71 continue

these investigations. The size of a nonprincipal subdeterminant is

related to the extent to which its main diagonal overlaps the main diagonal

of the containing matrix.

In [8], the numerical range is generalized to several maps by defining

W(AI,...,Ak)

to be the set of points in the complex plane obtained by multiplying the

quadratic forms

(Aixi, x), i =

where x1l,. ..,xk are orthonormal vectors.

I The paper [111 contains three elementary proofs of the difficult

theorem of Goldberg and Straus on numerical radii (M. Goldberg and

E.G. Straus, Linear Algebra and Appl. 24 (1979), 113-131).

In [121, a generalization of the numerical range is defined as

* I follows: Let 1 5 r S n, A a linear transformation on an n-dimensional

unitary space V and let

G = G :G2 :G31

16



be an r x 3r matrix. A collection of 2r vectors

X1 ""*xr*Ylg .... lYr

in V is said to be a set of G vectors whenever

G1 = (xix] , G [(yiyj)J, G = [(xi,yjA.

In [121, the structure of the set W(A;G), of values of the form

(Ax1 ,y) + --- + (Axry r )

where

Xl, ...,IXr . , r

run over all G-vectors is investigated. Specifically, conditions for

W(A;G) to be convex, the origin, or empty are given along with some

upper bounds on the maximum modulus of any element in W(A;G). These

results extend some of the classical results of Hausdorff, Toeplitz, von

Neumann, Fan, Berger, and Westwick concerning higher numerical ranges.

The work on classical matrix inequalities appears in [4, 9, 15].

In a research problem (Notices Amer. Math. Soc. 25(7):506 (1978)), A. Abian

posed a problem related to the classical Cauchy-Schwarz Inequality. Let

V be a unitary space and let A, B, P, Q be linear on V. The question

I
Sis: what are necessary and sufficient conditions that

J~i(Av,u)(Bu,v) 5- (Pu,u)(Qv,v)

for all u,v in V? In [41, this question is completely resolved. In

[91, the same problem is reexamined in a more general setting: Let A,

B, P, Q be n-square nonsingular complex matrices, and for I 1 m < n

17



let U and V be n x m complex matrices. For n 3 necessary and

sufficient conditions are given for the inequality

det(U*AV)det(V*BU) 5 det(U*PU).det(V*QV)

to hold for all U and V.

The paper [151 gives an elementary proof of an inequality for any

principal subdeterminant of a positive-definite Hermitian matrix A. In

particular, let C be a k-square principal submatrix of the inverse of A.

Let D be the inverse of the principal submatrix of A lying in the

same numbered rows and columns that define D. Then C D where the

inequality sign denotes dominance in the sense that C - D is positive

semi-definite Hermitian.

Items [5, 14, 161 are concerned with tensor spaces and multilinear

algebra. Certain linear groups of operators can be defined in terms of

generalized matrix functions. These groups are characterized in [5].

This work is related to earlier work of G.M. de Oliveira and J.A. Dias da

Silva.

In [14], an index is defined for spaces of tensors. This index is

computed for the Grassmann space, the tensor space, and the completely

symmetric space.

In 116], a detailed analysis of the equality of decomposable sym-

metrized tensors is described. This work extended earlier work of Freese,

Nerris, Pierce, and Williamson.

18
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ELEMENTARY DIVISORS, GENERAL INEQUALITIES, HADAMARD MATRICES,

AND PERMANENTS

by

Henryk Minc

ABSTRACT

My work sponsored by Air Force Grant AFOSR-79-0127

was concerned with the following topics: (1) Inverse

elementary divisor problems for nonnegative matrices.

(2) Bounds for permanents. (3) Inequalities. (4)

Hadamard matrices. (5) Theory of permanents and its

applications. (6) The van der Waerden permanent

conjecture. (7) Minimum of the permanent of a doubly

stochastic matrix with prescribed zero entries.

2
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ELEMENTARY DIVISORS, GENERAL INEQUALITIES, HADAMARD MATRICES,

~AND PERMANENTS

by

wHenryk Hinc

1. Inverse Elementary Divisor Problems for Nonnegative Matrices.

One of the most important unsolved problems in linear algebra is

the inverse eigenvalue problem for nonnegative matrices: to find

necessary and sufficient conditions that a given n-tuple of complex

numbers be the spectrum of a nonnegative matrix. A parallel problem for

doubly stochastic matrices in unsolved as well. The inverse elementary

divisor problem for doubly stochastic matrices, the determination of

necessary and sufficient conditions that given polynomials be the

elementary divisors of a doubly stochastic matrix, contains the inverse

eigenvalue problem, and obviously it is also unsolved.

In [4) it is shown that for any real a, - < a < 1, and anyn-I

positive integers e 2, .. e whose sum is n-, there exist doubly

stochastic n x n matrices with elementary divisors A-I and (A-a)

i = 2,...,m. This result implies that for any n 3 there exist doubly

stochastic n x n matrices which have no roots. In [41 the inverse

elementary divisor problem is considered for doubly stochastic matrices

modulo the inverse eigenvalue problem: given a doubly stochastic matrix,

does there exist a doubly stochastic matrix with the same spectrum and

arbitrarily prescribed elementary divisors consistent with the spectrum

k
that do not include (N-I) with k > 1 (otherwise the answer would
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clearly be in the negative). The question is answered in 141 in the

negative in general, and in the affirmative in case the given matrix is

positive, diagonalizable, and with real eigenvalues.

In 151 it is proved that given any positive diagonalizable matrix,

there exists a positive matrix with the same spectrum and with any pre-

scribed elementary divisors consistent with the spectrum. A parallel

result for doubly stochastic matrices was also proved, thus extending

the result in [4] to diagonalizable positive doubly stochastic matrices

with complex, not necessarily real, eigenvalues.

2. Bounds for Permanents.

In 121, bounds for permanents of real matrices are obtained. In (1]

Friedland's lower bound for the permanents of doubly stochastic matrices

is utilized to obtain an improved lower bound for the d-dimensional dimer

problem for d > 4:

Ad ~ log(2d) -

For the all important 3-dimensional case it is known that

0.418347 X3 < 0.548271,

where the lower bound is due to Hemmersley and the upper bound is due to

Minc. In order to improve these bounds it is necessary to obtain sharper

bounds than the currently known bounds for the permanents of

(0,1)-circulants with 6 ones in each row. For this purpose, permanents

of some 850 (0,1)-circulants were computed, of orders up to 18 x 18,

with 3, 4 or 6 ones in each row. No definite results have been obtained

so far.
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3. Inequalities.

Let (alj,a 2j,. ..,a M .) be non-negative m.-tuples, j 1,...,n,

where m ... a m => 1, and In l m. = . Let
n j=1 j

a ' 5.. <' of' < <Sa' < a' a'a'
11 21 . . 1 = 12 22 a in - 2n " n n1. n

be the M numbers a.., i 1,...,m., j = 1,... ,n, arranged in non-

decreasing order, and

et>>_* of 2! o *_ or*
"1 = 21 m11 12= 22 M2 n 2n Mn

be the same numbers arranged in non-decreasing order.

In [31, inequalities of the following types are proven. If a < 1,

i 1,...,mj, j = 1,...,n, then

n m. n M.
I nlja.. 5- 1 IVJ U..

j=1 i=1 13 j=l i=1 1j

and

n nfl(+a a2 .. a ~(1 c' • cv' .).n(I + a I a2  . a n)<I (I + all.a .. a"m

j= 1. m2

If a ij_ 1, i = 1,...,mj, j = 1,...,n, then

n M. n M.
I IflJo.. < I l "#
j=l i=1 z j=1 i=l x

and

n n

n (I + a .. .a m ) n n (1 + ( _ .. .u" ).
j=l lj 2j m j=l j 2j mj

In either case

n M. n 0.
4 a n V a*Sj=I i=l ij j=1 i=I I
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Some of these inequalities were used to establish bounds for permanents

of nonnegative matrices.

4. Hadamard Matrices.

Let A(n) be the maximum of the absolute value of the determinant of

n x n (1, -1)-matrices. Fr~chet asked if there exists a simple analytic

expression for A(n) as a function of n, and he proposed the problem

of determining an analytic asymptotic expression for A(n). It is known

that A(n) S nn12, and that equality, for n > 2, can hold only if

n E 0 mod 4. In [71 relevant known results for all n are surveyed, and

it is concluded that Fr~chet's question should be answered in the negative,

although

log A(n) n log n.

5. Theory of Permanents and Its Applications.

The last five years witnessed an increased research activity in the

theory of permanents and its applications. At least 75 new research

papers on the subject and similar publications were written or were actually

published during the period 1978-1981; this represents nearly 20% of the

total literature on permanents in the last 170 years.

In [9) the developments in the area are surveyed. The paper includes

a detailed discussion of Egorycev's proof of the van der Waerden conjecture

(see below), a section on bounds of permanents of (0,1)-matrices, and on

their applications to the dimer problem, to the problem of enumeration of

j Latin rectangles, and other topics. The paper contains a report on the

current status of each of the 20 conjectures and 10 problems, which

were listed as unsolved in Minc's "Permanents" (1978). Additional 10

conjectures and 3 problems are proposed.

25



6. The Van der Waerden Permanent Conjecture.

Research in the theory of permanents and its applications in the last

two years has been strongly influenced by the recent solutions of the van

der Waderden permanent conjecture by Egory'ev and by Falikman. They both

proved that

per(S) ? n!/n 
n ()

for any n x n doubly stochastic matrix S. In addition, Egorycev showed

that equality can hold in (1) if and only if S is the n x n matrix

all of whose entries are 1/n. In paper 191 a version of Egorycev's

proof is given. In [6] two alternative variants of his proof are pre-

sented. In [8] versions of Egoryfev's proof and of Falikman's proof are

given in detail.

7. Minimum of the Permanent of a Doubly Stochastic Matrix with Prescribed

Zero Entries.

Paper [10] is a study of properties of matrices with minimum permanent

in a face of Q n' the polyhedron of doubly stochastic n x n matrices,

i.e., for doubly stochastic matrices with zero entries in prescribed fixed

positions. Egorycev proved that all permanental cofactors of a matrix

with minimal permanent in 0 are equal. This implies that in such a
n

4matrix any pair of rows (columns) can be replaced by their mean without

change in permanent. This averaging process leads to a proof of theI
van der Waerden conjecture. Unfortunately, in the case of doubly

stochastic matrices with prescribed zero entries such an averaging method

has only a restricted application (viz., to rows (columns) with same
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prescribed zero pattern). In [10] it is proved that permanental co-

factors of a matrix with minimal permanent in a face of 0 cannotn

exceed the permanent of the matrix; and that the permanental cofactors of

entries which are not prescribed, are actually all equal to the permanent

of the matrix. This result is then used to obtain minimum permanents in

faces of 0 in which all prescribed zeros are restricted to two rows or
n

columns, or in which the prescribed zeros form a submatrix.

In some cases in which prescribed zeros are located in many rows

(columns), Falikman's method seems to be more appropriate than that of

Egoryeev. Some partial results, as yet unpublished, have been obtained.
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APPLICATIONS OF NUMBER THEORY TO COMPUTATION

by

Morris Newman

ABSTRACT

Work on the Air Force Project was entirely concerned

with the application of number theory to high speed digital

computation, using as tools residue arithmetic, p-adic

arithmetic, and multiprecision arithmetic.
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APPLICATIONS OF NUMBER THEORY TO COMPUTATION

by

Morris Newman

Work on the Air Force project was entirely concerned with the

application of number theory to high speed digital computation, using

as tools residue arithmetic, p-adic arithmetic, and multiprecision

arithmetic. Numerous programs for the now defunct ILLIAC4 were prepared

which took advantage of the parallel processing feature~s of this machine.

In particular, programs were prepared using residual arithmetic for the

following:

(1) The exact solution of an integral system of linear equations, and

the exact computation of the determinant of the system.

(2) The determination of the exact inverse of an integral matrix using

minimal storage.

(3) The determination of the rank and a basis for the null space of an

integral matrix;

(4) The determination of all rational solutions of an integral system

of linear equations.

(5) The determination of the eigenvalues of a rational symmnetric triple

J diagonal matrix to any desired accuracy.

.4(6) The computation of the permanent of a matrix.

(7) The determination of the Hermite normal form of an integral matrix.

j(8) The determination of the exact characteristic polynomial of an

integral matrix.

(9) The determination of the Smith normal form of an integral matrix.
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In addition, a program was prepared (for a serial machine) which

finds the exact solution of a linear system by p-adic arithmetic, rather

than residue arithmetic. The advantage is that only one prime modulus is

necessary, and the numerous local solutions modulo differing primes are

replaced by simple matrix by vector multiplications modulo the single

prime. In additionl the Chinese Remainder Theorem is not required; only

some rather simple multiprecision multiplications, divisions, and

additions need be performed. The time required to find the exact solution

in this way compares very favorably with the time required to find an

ordinary solution.

Finally, work on this project resulted in three Master's theses

supervised by N. Newman.

3
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SINGULAR VALUES, INVARIANT FACTORS,

THE MATRIX EXPONENTIAL, AND EIGENVALUES

by

Robert C. Thompson

ABSTRACT

The results achieved centered around the properties of

singular values, of invariant factors of matrices, of the

exponential function acting on matrices, and of eigenvalues

of finite matrices. Continuing study progress has been made

on a wide class of matrix questions, some of which are self

contained, and others lead to some of the most fundamental

aspects of linear algebra.
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SINGULAR VALUES, INVARIANT FACTORS,

THE MATRIX EXPONENTIAL, AND EIGENVALUES

by

Robert C. Thompson

The results achieved centered around the properties of singular

values of invariant factors of matrices, of the exponential function

acting on matrices and of eigenvalues of finite matrices, with all these

topics and some others subsumed under the general theme of inequalities

in linear algebra. Some typical results are cited below. Because of the

many results achieved, only representative ones can be mentioned here.

1. Properties of Singular Values.

Some of the deepest questions in linear algebra fall under this

heading, it being realized during the review period that the proper

approach to them is through the study of the Lie algebras and Lie groups.

The efforts to develop this approach during the review period will yield

many results in future years.

Items [1], 141, [7], [10], [14], [161, and [18] present new results

on singular values. Only [7] will be described here. In [71 a new type

of numerical range for matrices was defined, and a complete analysis of

it is given. Let A be a fixed matrix. The numerical range in question is

the principal diagonal of all matrices UAUt as U ranges over all

unitary matrices (t denotes transpose). The complete characterization

found for this numerical range is given in terms of the singular values

of A.
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2. Properties of Invariant Factors.

These are the invariant factors that appear in the Smith canonical

form for integer or polynomial matrices. They were investigated in a

variety of ways, in [2], 131, 15], 16], 18), [91, 112], 1171, [24], 125],

and [26]. In [61 conditions were given on how invariant factors behave

when matrices add, and these conditions were further investigated in [51,

[25], and [17]. The conditions were a set of divisibility relations, and

[25] attempted to discuss the sufficiency of these conditions. The

difficulties encountered are analyzed in [171. In 191 the existence and

uniqueness of invariant factors was discussed using a new method.

In 112] some of the author's previous work on the eigenvalues of sums

of Hermitian matrices was utilized to give a short proof of an elegant

inequality pertaining to the behavior of invariant factors under matrix

multiplication. This inequality is just one of a large class found by

the author in a previous review period, but never published. The merit

of 112] is the simple proof it gives of one inequality from this large

class.

A key, and rather fundamental, conjecture was formulated, namely, if

A and B are Hermitian matrices, then unitary matrices U and V
iA i = iUAU-lVB -1

exist such that e IeB ei(A VV~ A number of results concerning

this conjecture appear in 1111, [20], 1211, and 1171. Partial proofs

are known for the conjecture, and it is known how to formulate it in Lie-

theoretic terms. If A and B are not Hermitian, the same conjecture

can be formulated (with U, V now just nonsingular, not necessarily

unitary). It has been proved (in 1201) that this latter conjecture can
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be valid only for matrices A, B sufficiently near zero. The conjecture

is important because it bears on the relationship between a Lie group and

its Lie algebra.

4. Properties of eigenvalues.

Paper (161 investigated the relationship between the diagonal

elements and the eigenvalues of a normal matrix. It is a long open

question to clarify this relationship. Paper 116] showed that a rather

natural condition evolving from the author's work on singular values

could not give the full answer to this question, even though it yielded

infinitely many constraints.

5. Embedding Properties.

Linear algebra is full of results determining when one matrix can be

embedded in another. There is a large amount of already existing research

on this theme under the heading of unitary dilation theory. Paper 110]

showed that, in spite of the impressive quantity of unitary dilation

results in the functional analysis literature, there are many as yet un-

touched ramifications in related directions. Specifically, it was shown

how dilations to doubly stochastic matrices, to unimodular (integer)

matrices, to complex orthogonal matrices, instead of to unitary matrices,

lead to many questions, some of which can be solved. Although [101 gave

many results, its significance is the hints it gives for future directions

of research.

6. Matrix Inequalities.

One of the most fundamental inequalities in mathematics is the

triangle inequality, and in an earlier period it was found how to extend
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it to a matrix valued version: Given matrices A and B, there exist

unitary matrices U and V such that IA+BI S U[AIU " I + VIBIV 1,

where 1.1 denotes a matrix valued absolute value acting on matrices.

Further investigation of this inequality was carried out in [141 and [I].

There is related number theoretical research to be reported in [-491.

Multiplicative versions of the matrix triangle inequality have also been

investigated, with partial success.
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